ORIGINAL PAPER

Synthesis of novel 6-(substituted amino)-4-(4-ethoxyphenyl)-1phenyl-2(1*H*)-pyridinones via azo coupling

N. B. Patel · A. I. Gandhi · R. D. Sharma

Received: 2 August 2009/Accepted: 1 July 2010/Published online: 5 August 2010 © Springer-Verlag 2010

Abstract 6-(Substituted amino)-4-(4-ethoxyphenyl)-1-phenyl-2(1*H*)-pyridinones were prepared from β -aryl glutaconic acid, which, on fusion with aniline, results in 4-(4-ethoxyphenyl)-1-phenylpyridine-2,6(1*H*,5*H*)-dione. This, on further treatment with phosphorus oxychloride gave 6-chloro-4-(4ethoxyphenyl)-1-phenyl-2(1*H*)-pyridinone, and further treatment with secondary amines yielded 6-(substituted amino)-4-(4-ethoxyphenyl)-1-phenyl-2(1*H*)-pyridinones. These were subjected to azo coupling with different aryldiazonium chlorides furnishing two isomers, which were separated by column chromatography. All compounds were characterized by elemental analysis, and use of IR and NMR spectral data, and were evaluated for antimicrobial activity.

Keywords 2-Pyridinone · Secondary amines · Aryldiazonium chlorides · Antimicrobial activity

Introduction

2-Pyridinones are an important type of heterocycles with a variety of biological activity. In particular 2-pyridinones containing an H-bond acceptor substituent in position 5 are a relatively new class of specific phosphodiesterase 3 (PDE3) inhibitors [1]. Some of these, e.g. amrinone [2] and milrinone [3], are good alternatives to classic digitalis glycosides for acute treatment of congestive heart failure (CHF). Substituted pyridinones and their dihydro/tetrahydro derivatives are found in a wide variety of naturally occurring alkaloids, and compounds with these structural

N. B. Patel (🖂) · A. I. Gandhi · R. D. Sharma Department of Chemistry, Veer Narmad South Gujarat University, Udhna Magdalla Road, Surat 395007, Gujarat, India e-mail: drnavin@satyam.net.in motifs have been shown to have significant pharmacological properties [4].

Pyridinones have been reported to have non-nucleoside HIV type I specific reverse transcriptase inhibitor [5] and anti-inflammatory [6] activity, besides a wide range of pharmacological activity. They are well known for their diverse biological activity [7], for example fungicidal, bactericidal, insecticidal, herbicidal, virucidal, anti-tuber-cular, and cardiovascular. 2-Pyridinones have also been reported to be tissue factor VIIa inhibitors [8]. Cyclopenta[*b*]pyridin-2,5-dione is an interesting building block for access to 2-cyclopenta[*b*]pyridin-5-ones, seco analogues of 8-azasteroids [9], and it also has antiviral activity [10, 11].

Orally administrated piperazine is almost devoid of pharmacological activity. Intravenous administration results in a transient fall in blood pressure. Lethal doses cause convulsions and respiratory depression. A large number of substituted piperazine derivatives have anathematic activity. Various derivatives of piperazine have actual or potential use as antihistamines, anaesthetics, analgesics, anticonvulsants, antispasmodics, and for treatment of hypertension, epilepsy, burn shock, and haemorrhagic shock. Other, non-medical, applications of piperazine and its derivatives are as rubber antioxidants, corrosion inhibitors, wetting and emulsifying additives, in the cosmetics and dyeing industries, in resins, polymers, and synthetic fibres, and as analytical reagents [12–14].

Keeping these applications of 2-pyridinones and piperazine in mind, and in continuation of our earlier work, we decided to synthesize 6-amino-substituted 2(1H)-pyridinones from β -aryl glutaconic acid [15]. Substituted 2-pyridinones have been prepared by nucleophilic substitution reactions using heterocyclic groups, for example methyl/ethyl piperazinyl, etc. under basic conditions. These substituted pyridinones have two nucleophilic positions, 3 and 5 [16–18]. To check the nucleophilicity of these positions they were subjected for electrophilic substitution and then characterized by use of spectral data [19, 20]. The purpose of this work was to observe any variation in antimicrobial properties after structural changes and SAR studies.

Result and discussion

Synthesis

Compounds 4 and 5 were subjected to azo coupling. Two azo-coupled products were obtained, which were separated by column chromatography on activated silica gel using ethyl acetate-chloroform (60:40) as mobile phase. The compounds were characterized as 6-(substituted amino)-3-(arylazo)-4-(4-ethoxyphenyl)-1-phenyl-2(1*H*)-pyridinones 6–16 and 30–40 and their 5-(arylazo) isomers 17–27 and 41–51 (Scheme 1, Table 1) on the basis of spectral data.

In the ¹H NMR spectrum of 3-(4-chlorophenylazo)-4-(4ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1*H*)pyridinone (**9**), a proton singlet was observed at 5.9 ppm because of the proton at the C-5 position, whereas for 5-(4chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1*H*)-pyridinone (**20**), a proton singlet was observed at 6.5 ppm because of the proton at C-3 position.

After having checked the nucleophilicity at positions 3 and 5, a Mannich reaction was also carried out using secondary amines, for example 1-methylpiperazine and 1-ethylpiperazine. The resulting compounds **28**, **29**, **52**, and **53** prove that position 3 is more nucleophilic than position 5 [21].

Antimicrobial activity

Antibacterial activity against two Gram-positive (*S. aureus* and *B. subtilius*) and two Gram-negative (*E. coli* and *P. vulgarius*) bacteria at two concentrations (200 and 400 μ g/cm³) was tested by use of the diffusion method.

This experimental testing of antibacterial activity did not produce results comparable with those from the standard drug, cefoperazone, even when the substituents at position C-6 of the pyridinones were changed to methylpiperazine and ethylpiperazine [14, 22].

Antifungal activity was tested against *C. albicans* by use of the diffusion method. This showed that 6-(substituted amino)-2(1H)-pyridinones with a methylpiperazine and ethylpiperazine moiety at the C-6 position of the pyridinones were inactive. These derivatives were subjected to azo coupling and the products obtained were tested for the antifungal activity in the same way. Mild activity was observed; ethylpiperazine derivatives had no activity. Therefore it can be concluded that introduction of a diazo group to either the C-3 or C-5 position of the pyridinone its antifungal activity is lost [20, 22, 23].

Experimental

Melting points were determined by means of the open capillary method. IR spectra (KBr pellets) were recorded on a Perkin–Elmer spectrophotometer. NMR spectra were recorded in CDCl₃ on a Bruker Avance II 400 MHz instrument using TMS as internal standard. Elemental analysis was performed by means of a Heraeus CHN rapid analyser; results agreed satisfactorily with calculated values. For TLC analysis, silica gel coated Al plates (Merck) were used. 6-Chloro-4-(4-ethoxyphenyl)-1-phenyl-2(1*H*)-pyridinone (**3**) was synthesized from 1,3-acetonedicarboxylic acid via **1** and **2** according to a procedure published elsewhere [15].

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**4**, C₂₄H₂₇N₃O₂)

A mixture of 3.255 g (0.01 mol) **3** and 2.0 g (0.01 mol) 1-methylpiperazine was heated under reflux for 12 h. The reaction mass was then poured into acidic crushed ice and the resulting solid was filtered, washed with water, and crystallized from acetone to furnish 3.3 g (84.8%) **4**. M.p.: 199–201 °C; IR (KBr): $\bar{\nu} = 3,020, 2,920$ (C–H), 1,700, 1,660 (C=O), 1,245 (C–O–C), 1,430 (C–N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 6.6 (d, 1H, C3–H), 7.0–7.7 (m, 9H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8, 43.1$, 48.9, 55.3, 64.7, 74.9, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 129.0, 129.0, 129.4, 129.4, 132.8, 138.8, 156.7, 157.5, 160.7 ppm; MS (EI): m/z = 389; HRMS (EI): m/z calcd [M]⁺ 389.2103, found 389.2101.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-2(1H)pyridinone (5, $C_{25}H_{29}N_3O_2$)

Compound **5** was prepared similarly to **4** but by reaction of **3** with 1-ethylpiperazine. Yield 3.2 g (79.4%); m.p.:

Scheme 1

a, aniline; b, POCl₃; c, methyl- / ethylpiperazine d, substituted diazonium chlorides; e, Mannich reaction

207–209 °C; IR (KBr): $\bar{\nu} = 3,020, 2,920$ (C–H), 1,700, 1,660 (C=O), 1,245 (C–O–C), 1,430 (C–N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (m, 6H, CH₃), 2.5 (q, 2H, Pip–NCH₂), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 6.6 (d, 1H, C₃–H), 7.0–7.7 (m, 9H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.2, 52.8, 52.8, 64.7, 74.9, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 129.0, 129.4, 129.4, 132.8, 138.8, 156.7, 157.5, 160.7 ppm; MS (EI): m/z = 403; HRMS (EI): m/z calcd [M]⁺ 403.2260, found 403.2260.

General procedure for 4-(4-ethoxyphenyl)-6-(4-methyl/ ethylpiperazinyl)-1-phenyl-3/5-(substituted phenylazo)-2(1H)-pyridinones 6–27 and 30–51

To a precooled (0–5 °C) solution of **4** or **5** (0.01 mol) in experimental; after 100 cm³ acetone, a precooled (0–5 °C) solution of benzenediazonium chloride was added (prepared by diazotizing substituted aniline (0.01 mol) in 6 cm³ 1:1 HCl with 0.69 g (0.01 mol) NaNO₂ in 10 cm³ water). The reaction mixture was poured into 200 cm³ water and then made alkaline by addition of dilute NaOH.

Table 1 Characterization data for compounds 6-53

Compound number	R	R ²	R′	M.p. (°C)	Yield (%)
6	CH ₃		Н	172–174	36
7	CH_3		o-Cl	183–185	35
8	CH_3		<i>m</i> -Cl	179–181	36
9	CH_3		p-Cl	189–191	35
10	CH_3		o-CH ₃	163-165	34
11	CH_3		m-CH ₃	170-172	35
12	CH_3		p-CH ₃	155-157	35
13	CH_3		$o-NO_2$	199–201	35
14	CH_3		m-NO ₂	186–188	35
15	CH_3		p-NO ₂	179–181	35
16	CH_3		o-OCH ₃	160-162	35
17	CH_3		Н	148-150	35
18	CH_3		o-Cl	161–163	35
19	CH_3		<i>m</i> -Cl	182–184	34
20	CH_3		p-Cl	168-170	34
21	CH_3		o-CH ₃	150-152	34
22	CH_3		m-CH ₃	144–146	35
23	CH_3		p-CH ₃	149–151	35
24	CH_3		$o-NO_2$	202-204	33
25	CH_3		m-NO ₂	207-209	36
26	CH_3		p-NO ₂	189–191	34
27	CH_3		o-OCH ₃	152–154	36
28	CH_3	CH_3	-	182–184	70
29	CH_3	C_2H_5	_	205-207	65
30	C_2H_5		Н	169–171	36
31	C_2H_5		o-Cl	185–187	34
32	C_2H_5		<i>m</i> -Cl	173–175	32
33	C_2H_5		p-Cl	193–195	35
34	C_2H_5		o-CH ₃	142–144	35
35	C_2H_5		m-CH ₃	159–161	36
36	C_2H_5		<i>p</i> -CH ₃	152–154	36
37	C_2H_5		$o-NO_2$	172–174	36
38	C_2H_5		m-NO ₂	149–151	35
39	C_2H_5		p-NO ₂	168-170	36
40	C_2H_5		o-OCH ₃	177–179	36
41	C_2H_5		Н	170-172	34
42	C_2H_5		o-Cl	175–177	34
43	C_2H_5		m-Cl	188–190	34
44	C_2H_5		p-Cl	179–181	33
45	C_2H_5		o-CH ₃	152–154	35
46	C_2H_5		m-CH ₃	160-162	33
47	C_2H_5		<i>p</i> -CH ₃	146–148	34
48	C_2H_5		$o-NO_2$	166–168	34
49	C_2H_5		m-NO ₂	175–177	34
50	C_2H_5		p-NO ₂	181–183	34
51	C_2H_5		o-OCH ₃	192–194	35
52	C_2H_5	CH_3	-	182–184	70
53	C_2H_5	C_2H_5	-	195–197	65

The coloured product was filtered, washed with water, and dried. Two azo-coupled products were obtained; these were separated by column chromatography on activated silica gel using ethyl acetate–chloroform (60:40) as mobile phase.

General procedure for 4-(4-ethoxyphenyl)-6-(4-methyl/ ethylpiperazinyl)-3-[(4-methyl/ethyl-1-piperazinyl)methyl]-1-phenyl-2(1H)-pyridinones 28, 29, 52, 53

A mixture of 0.3 g (0.01 mol) paraformaldehyde and 1methyl or 1-ethylpiperazine (0.01 mol) was heated under reflux for 45 min in 50 cm³ chlorobenzene. Compound **4** or **5** (0.01 mol) was then added and the reaction mixture was heated under reflux for 22 h. The reaction mass was subjected to steam distillation to remove chlorobenzene. The solid product was filtered, washed, and recrystallized from acetone.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-3-(phenylazo)-2(1H)-pyridinone (**6**, C₃₀H₃₁N₅O₂)

IR (KBr): $\bar{\nu} = 1,260$ (C–O–C), 1,650 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,010, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 7.0–7.7 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 128.7, 128.8, 128.8, 128.9, 128.8, 128.9, 129.0, 129.0, 129.4, 129.4, 132.8, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 493; HRMS (EI): m/z calcd [M]⁺ 493.2478, found 493.2475.

3-(2-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone

(7, $C_{30}H_{30}ClN_5O_2$) IR (KBr): $\bar{\nu} = 1,250$ (C–O–C), 1,660 (>C=O), 1,575 (–N=N–), 1,425 (C–N), 3,020, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 5.9 (d, 1H, C₅–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.7, 48.9, 55.4, 55.3, 64.7, 74.9, 114.4, 114.4, 120.3, 121.6, 121.6, 124.0, 124.4, 126.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 527 [M]⁺, 529 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 527.2088, found 527.2092.

3-(3-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-

(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**8**, C₃₀H₃₀ClN₅O₂)

IR (KBr): $\bar{\nu} = 1,250$ (C–O–C), 1,670 (>C=O), 1,575 (–N=N–), 1,420 (C–N), 3,020, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 4.1 (q, 2H,

OCH₂), 6.0 (d, 1H, C₅–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 14.8, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 114.2, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.2, 129.4, 130.1, 130.2, 132.8, 134.3, 146.4, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 527 [M]⁺, 529 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 527.2088, found 527.2086.

3-(4-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone

$(9, C_{30}H_{30}ClN_5O_2)$

IR (KBr): $\bar{\nu} = 1,265$ (C–O–C), 1,665 (>C=O), 1,560 (–N=N–), 1,435 (C–N), 3,025, 2,910 (C–H) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 3.9–4.0 (q, 2H, OCH₂), 5.9 (s, 1H, C₅–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8, 43.1, 48.9,$ 48.9, 55.2, 55.3, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 126.8, 128.7, 128.9, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 527 [M]⁺, 529 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 527.2088, found 527.2089.

4-(4-Ethoxyphenyl)-3-(2-methylphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone ($10, C_{31}H_{33}N_5O_2$)

IR (KBr): $\bar{v} = 1,255$ (C–O–C), 1,655 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,030, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 7.0–7.7 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 15.2, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 114.3, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 125.8, 128.1, 128.7, 128.7, 129.0, 129.0, 129.1, 129.4, 132.4, 132.8, 137.1, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2629.

4-(4-Ethoxyphenyl)-3-(3-methylphenylazo)-6-

(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (11, $C_{31}H_{33}N_5O_2$)

IR (KBr): $\bar{\nu} = 1,240$ (C–O–C), 1,660 (>C=O), 1,565 (–N=N–), 1,420 (C–N), 3,025, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.3 (s, 6H, CH₃), 2.7–3.5 (m, 8H, Pip–H), 3.9–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 7.0–7.7 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 24.3, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 125.8, 128.6, 128.7, 129.0, 129.0, 129.1, 129.4, 130.4, 132.7, 138.4, 146.5, 156.7 ppm; MS (EI): m/z = 507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2630.

4-(4-Ethoxyphenyl)-3-(4-methylphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**12**, C₃₁H₃₃N₅O₂)

IR (KBr): $\bar{\nu} = 1,250$ (C–O–C), 1,650 (>C=O), 1,560 (–N=N–), 1,425 (C–N), 3,010, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.6–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 5.9 (d, 1H, C₅-H), 7.0–7.7 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 24.3, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 113.0, 114.3, 114.3, 121.6, 121.6, 124.2, 124.4, 125.7, 127.3, 127.0, 128.7, 128.7, 129.0, 129.1, 129.1, 132.8, 138.4, 155.0, 156.7, 156.7, 158.4 ppm; MS (EI): m/z = 507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2635.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-3-(2-nitrophenylazo)-1-phenyl-2(1H)-pyridinone (13, $C_{30}H_{30}N_6O_4$)

IR (KBr): $\bar{\nu} = 1,245$ (C–O–C), 1,660 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,020, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 3.9–4.0 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 113.0, 114.3, 114.3, 121.1, 121.6, 121.6, 124.0, 124.2, 127.0, 127.0, 129.0, 129.7, 129.7, 132.8, 134.9, 148.0, 155.0, 156.7, 156.7, 156.7, 158.4 ppm; MS (EI): m/z = 538; HRMS (EI): m/z calcd [M]⁺ 538.2329, found 538.2326.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-3-(3-nitrophenylazo)-1-phenyl-2(1H)-pyridinone $(14, C_{30}H_{30}N_6O_4)$

IR (KBr): $\bar{v} = 1,260$ (C–O–C), 1,655 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,020, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.7, 48.9, 55.3, 55.3, 64.7, 74.9, 112.9, 114.3, 114.3, 121.1, 121.6, 121.6, 124.0, 124.2, 124.4, 127.0, 127.1, 129.0, 129.0, 129.6, 129.7, 132.8, 134.9, 148.0, 155.0, 156.7, 156.8, 158.4 ppm; MS (EI): m/z = 538; HRMS (EI): m/z calcd [M]⁺ 538.2329, found 538.2325.

$\begin{array}{l} 4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-3-\\ (4-nitrophenylazo)-1-phenyl-2(1H)-pyridinone\\ \textbf{(15, } C_{30}H_{30}N_6O_4)\end{array}$

IR (KBr): $\bar{\nu} = 1,250$ (C–O–C), 1,650 (>C=O), 1,575 (–N=N–), 1,435 (C–N), 3,010, 2,925 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅–H), 6.9–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 14.8, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 74.9, 113.0, 114. 3, 114.3, 121.1, 121.1, 121.6, 121.6, 124.2, 124.4, 126.9, 127.0, 129.0, 129.0, 129.7, 129.7, 132.8, 134.8, 148.0, 155.0, 156.6, 156.7, 158.4 ppm; MS (EI): *m*/*z* = 538; HRMS (EI): *m*/*z* calcd [M]⁺ 538.2329, found 538.2334.

4-(4-Ethoxyphenyl)-3-(2-methoxyphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone

 $(16, C_{31}H_{33}N_5O_3)$

IR (KBr): $\bar{\nu} = 1,255$, 1,240 (C–O–C), 1,670 (>C=O), 1,565 (–N=N–), 1,425 (C–N), 3,020, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.3 (s, 3H, CH₃), 2.6–3.3 (m, 8H, Pip–H), 3.6 (s, 3H, OCH₃), 4.2 (q, 2H, NCH₂), 6.0 (s, 1H, C₅–H), 7.0–7.8 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.3, 55.3, 55.9, 64.7, 74.1, 99.6, 113.0, 114.3, 114.3, 114.3, 114.3, 121.1, 121.6, 121.6, 124.2, 124.4, 127.0, 127.0, 129.0, 129.2, 129.7, 129.8, 132.8, 155.0, 156.6, 156.7, 158.4, 159.1 ppm; MS (EI): m/z = 523; HRMS (EI): m/z calcd [M]⁺ 523.2583, found 523.2576.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-5-(phenylazo)-2(1H)-pyridinone (**17**, C₃₀H₃₁N₅O₂)

IR (KBr): $\bar{v} = 1,250$ (C–O–C), 1,660 (>C=O), 1,565 (–N=N–), 1,430 (C–N), 3,020, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C₃–H), 7.0–7.7 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 49.0, 55.3, 55.3, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 128.7, 128.8, 128.8, 128.8, 128.9, 128.9, 129.0, 129.0, 129.4, 132.4, 132.8, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 493; HRMS (EI): m/z calcd [M]⁺ 493.2478, found 493.2479.

$\label{eq:charge} 5-(2-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-$

(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**18**, C₃₀H₃₀ClN₅O₂)

IR (KBr): $\bar{v} = 1,255$ (C–O–C), 1,650 (>C=O), 1,570 (–N=N–), 1,420 (C–N), 3,025, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4-1.5$ (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 3.9–4.0 (q, 2H, OCH₂), 6.5 (d, 1H, C3–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8, 43.1, 48.9, 48.9, 55.2, 55.3, 64.7, 75.0, 114.3, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 157.1, 157.5, 160.7 ppm; MS (EI): <math>m/z = 527$ [M]⁺, 529 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 527.2088, found 527.2083.

5-(3-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (19, C₃₀H₃₀ClN₅O₂)

IR (KBr): $\bar{\nu} = 1,240$ (C–O–C), 1,655 (>C=O), 1,560 (–N=N–), 1,425 (C–N), 3,025, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.2, 48.9, 48.9, 55.3, 55.3, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.1, 130.1, 132.8, 134.3, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 527 [M]⁺, 529 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 527.2088, found 527.2085.

5-(4-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**20**, C₃₀H₃₀ClN₅O₂)

IR (KBr): $\bar{\nu} = 1,245$ (C–O–C), 1,660 (>C=O), 1,565 (–N=N–), 1,430 (C–N), 3,020, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.7–3.4 (m, 8H, Pip–H), 3.9–4.0 (q, 2H, OCH₂), 6.6 (s, 1H, C3–H), 6.9–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.3, 55.3, 64.6, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 126.8, 128.9, 128.9, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 157.1, 157.5, 160.7 ppm; MS (EI): m/z = 527 [M]⁺, 529 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 527.2088, found 527.2087.

4-(4-Ethoxyphenyl)-5-(2-methylphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone

(21, C₃₁H₃₃N₅O₂)

IR (KBr): $\bar{v} = 1,245$ (C–O–C), 1,650 (>C=O), 1,575 (–N=N–), 1,445 (C–N), 3,020, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 6H, CH₃), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 6.9–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 15.2, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 125.8, 128.1, 128.7, 128.7, 129.0, 129.0, 129.1, 129.4, 132.8, 137.1, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2631.

4-(4-Ethoxyphenyl)-5-(3-methylphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone

$(22, C_{31}H_{33}N_5O_2)$

IR (KBr): $\bar{\nu} = 1,265$ (C–O–C), 1,665 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,020, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H,

OCH₂), 6.5 (d, 1H, C3–H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 24.3, 43.1, 48.9, 48.8, 55.3, 55.3, 64.7, 75.0, 114.3, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 125.8, 128.6, 128.7, 129.0, 129.1, 129.1, 129.4, 129.4, 130.4, 132.8, 138.4, 146.4, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 507; HRMS (EI): m/zcalcd [M]⁺ 507.2634, found 507.2634.

4-(4-Ethoxyphenyl)-5-(4-methylphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (23, C₃₁H₃₃N₅O₂)

IR (KBr): $\bar{v} = 1,255$ (C–O–C), 1,660 (>C=O), 1,565 (–N=N–), 1,435 (C–N), 3,020, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.5 (s, 6H, CH₃), 2.7–3.4 (m, 8H, Pip–H), 3.9–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 6.9–7.5 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 24.3, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 125.7, 128.7, 128.7, 128.8, 129.0, 129.1, 129.1, 129.4, 132.8, 138.4, 146.6, 157.0, 157.5, 160.7 ppm; MS (EI): m/z =507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2629.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-5-(2-nitrophenylazo)-1-phenyl-2(1H)-pyridinone (24, $C_{30}H_{30}N_6O_4$)

IR (KBr): $\bar{v} = 1,240$ (C–O–C), 1,665 (>C=O), 1,575 (–N=N–), 1,430 (C–N), 3,015, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.8–3.6 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 6.9–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.2, 55.3, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.1, 121.6, 121.6, 124.0, 124.4, 129.0, 129.0, 129.4, 129.4, 129.7, 129.7, 132.8, 134.9, 146.5, 147.9, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 538; HRMS (EI): m/z calcd [M]⁺ 538.2329, found 538.2335.

$\begin{array}{l} 4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-5-\\ (3-nitrophenylazo)-1-phenyl-2(1H)-pyridinone\\ \textbf{(25, } C_{30}H_{30}N_6O_4)\end{array}$

IR (KBr): $\bar{\nu} = 1,250$ (C–O–C), 1,650 (>C=O), 1,560 (–N=N–), 1,425 (C–N), 3,010, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 3H, NCH₃), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.3, 55.3, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.1, 121.6, 121.6, 124.0, 124.4, 129.0, 129.1, 129.4, 129.4, 129.6, 129.7, 132.8, 134.9, 146.5, 148.0, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 538; HRMS (EI): m/z calcd [M]⁺ 538.2329, found 538.2327.

$\begin{array}{l} 4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-5-\\ (4-nitrophenylazo)-1-phenyl-2(1H)-pyridinone\\ \textbf{(26, }C_{30}H_{30}N_6O_4)\end{array}$

IR (KBr): $\bar{\nu} = 1,255$ (C–O–C), 1,655 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,020, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (t, 3H, CH₃), 2.5 (s, 3H, NCH₃), 2.6–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.5 (d, 1H, C3–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.9, 48.9, 55.1, 55.3, 64.7, 75.0, 114.4, 114.5, 118.9, 120.4, 121.1, 121.1, 121.6, 121.6, 124.4, 129.0, 129.0, 129.4, 129.4, 129.7, 129.8, 132.8, 134.8, 146.5, 147.8, 157.0, 157.5 ppm; MS (EI): m/z = 538; HRMS (EI): m/z calcd [M]⁺ 538.2329, found 538.2330.

4-(4-Ethoxyphenyl)-5-(2-methoxyphenylazo)-6-(4-methylpiperazinyl)-1-phenyl-2(1H)-pyridinone (27, $C_{31}H_{33}N_5O_3$)

IR (KBr): $\bar{\nu} = 1,260, 1,250$ (C–O–C), 1,660 (>C=O), 1,570 (–N=N–), 1,420 (C–N), 3,015, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.5 (t, 3H, CH₃), 2.4 (s, 3H, CH₃), 2.6–3.5 (m, 8H, Pip–H), 3.6 (s, 3H, OCH₃), 4.2 (q, 2H, NCH₂), 6.6 (s, 1H, C3–H), 7.0–7.8 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.8$, 43.1, 48.8, 48.9, 55.3, 55.3, 55.9, 64.7, 75.0, 99.6, 114.3, 114.4, 114.4, 118.9, 120.4, 121.1, 121.6, 121.7, 124.4, 129.0, 129.1, 129.4, 129.4, 129.8, 132.8, 146.5, 157.0, 157.5, 159.1, 160.7 ppm; MS (EI): m/z = 523; HRMS (EI): m/z calcd [M]⁺ 523.2583, found 523.2577.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-3-[(4-methyl-piperazinyl)methyl]-1-phenyl-2(1H)-pyridinone(28, $C_{30}H_{39}N_5O_2$)

IR (KBr): \bar{v} = 1,260 (C−O−C), 1,650 (>C=O), 1,570 (−N=N−), 1,435 (C−N), 3,010, 2,920 (C−H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.4 (t, 3H, CH₃), 2.4 (s, 4H, NCH₃), 2.6 (s, 2H, CH₂), 2.3 (q, 2H, NCH₂), 2.7–3.4 (m, 16H, Pip−H), 3.5 (s, 2H, OCH₂), 5.9 (d, 1H, C₅−H), 6.7–7.6 (m, 9H, Ar−H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 14.8, 43.1, 43.1, 48.9, 48.9, 52.4, 52.4, 55.2, 55.3, 55.3, 55.3, 57.9, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.4, 129.0, 129.0, 129.4, 129.4, 132.8, 134.8, 135.3, 156.7, 157.5, 158.3 ppm; MS (EI): *m*/*z* = 501; HRMS (EI): *m*/*z* calcd [M]⁺ 501.3104, found 501.3105.

4-(4-Ethoxyphenyl)-6-(4-methylpiperazinyl)-3-[(4-ethylpiperazinyl)methyl]-1-phenyl-2(1H)-pyridinone(29, $C_{31}H_{41}N_5O_2$)

IR (KBr): $\bar{v} = 1,260$ (C–O–C), 1,650 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,010, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.5$ (t, 3H, CH₃), 2.3 (s, 2H, NCH₃), 2.4 (s, 2H, NCH₃), 2.6 (s, 4H, CH₂), 2.3 (q, 2H, NCH₂), 2.7–3.3 (m, 16H, Pip–H), 3.5 (s, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 6.7–7.6 (m, 9H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 43.1, 48.9, 48.9, 49.2, 52.7, 57.8, 52.8, 52.8, 55.3, 55.3, 57.9, 64.7, 74.9, 114.4, 114.5, 120.4, 121.6, 121.6, 124.4, 129.0, 129.0, 129.4, 129.5, 132.8, 134.8, 135.3, 156.8, 157.5, 158.3 ppm; MS (EI): *m/z* = 515; HRMS (EI): *m/z* calcd [M]⁺ 515.3260, found 515.3257.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-3-(phenylazo)-2(1H)-pyridinone (**30**, C₃₁H₃₃N₅O₂)

IR (KBr): $\bar{\nu} = 1,255$ (C–O–C), 1,665 (>C=O), 1,575 (–N=N–), 1,425 (C–N), 3,020, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.6 (q, 2H, NCH₂), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.1, 49.2, 49.2, 52.8, 52.8, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.1, 124.4, 128.7, 128.8, 128.8, 128.9, 128.9, 129.0, 129.0, 129.4, 129.4, 132.8, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2631.

3-(2-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**31**, C₃₁H₃₂ClN₅O₂)

IR (KBr): $\bar{v} = 1,250$ (C–O–C), 1,655 (>C=O), 1,570 (–N=N–), 1,420 (C–N), 3,010, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.1 (d, 1H, C₅-H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.9, 49.2, 49.2, 49.2, 52.8, 52.6, 64.7, 74.9, 114.3, 114.4, 120.4, 121.5, 121.6, 124.0, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 156.7, 157.5, 158.5 ppm; MS (EI): m/z = 541 [M]⁺, 543 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 541.2245, found 541.2245.

3-(3-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-2(1H)-pyridinone

 $(32, C_{31}H_{32}CIN_5O_2)$

IR (KBr): $\bar{\nu} = 1,260$ (C–O–C), 1,660 (>C=O), 1,570 (–N=N–), 1,425 (C–N), 3,020, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.5 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.6–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.1, 49.2, 49.2, 52.8, 52.8, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.1, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.1, 130.2, 132.8, 134.3, 146.4, 156.8, 157.5, 158.4 ppm; MS (EI): m/z calcd [M]⁺, 543 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 541.2245, found 541.2243.

$\begin{array}{l} 3\text{-}(4\text{-}chlorophenylazo)\text{-}4\text{-}(4\text{-}ethoxyphenyl)\text{-}6\text{-}\\ (4\text{-}ethylpiperazinyl)\text{-}1\text{-}phenyl\text{-}2(1H)\text{-}pyridinone\\ \textbf{(33, }C_{31}H_{32}ClN_5O_2) \end{array}$

IR (KBr): $\bar{\nu} = 1,260$ (C–O–C), 1,660 (>C=O), 1,565 (–N=N–), 1,430 (C–N), 3,025, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.31.5$ (m, 6H, CH₃), 2.4 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.1 (d, 1H, C₅-H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 29.4, 49.1, 49.2, 49.2, 52.8, 52.8, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 126.8, 128.9, 128.9, 129.0, 129.0, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 156.7, 157.5, 158.6 ppm; MS (EI): m/z = 541 [M]⁺, 543 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 541.2245, found 541.2247.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-(2-methylphenylazo)-1-phenyl-2(1H)-pyridinone (**34**, C₃₂H₃₅N₅O₂)

IR (KBr): $\bar{v} = 1,250$ (C–O–C), 1,650 (>C=O), 1,575 (–N=N–), 1,445 (C–N), 3,025, 2,905 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 15.2, 49.2, 49.2, 49.2, 52.8, 52.9, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.1, 124.4, 125.8, 128.1, 128.7, 128.8, 129.0, 129.1, 129.1, 129.4, 129.4, 132.8, 137.1, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): *m/z* = 521; HRMS (EI): *m/z* calcd [M]⁺ 521.2791, found 521.2786.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-(3-methylphenylazo)-1-phenyl-2(1H)-pyridinone (**35**, C₃₂H₃₅N₅O₂)

IR (KBr): $\bar{v} = 1,245$ (C–O–C), 1,655 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,020, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.6 (t, 3H, CH₃), 2.3 (s, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.5 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 5.9 (d, 1H, C₅-H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 41.7, 24.3, 49.2, 49.2, 49.2, 52.8, 52.8, 64.7, 74.9, 114.4, 114.5, 120.4, 121.6, 121.7, 124.0, 124.4, 125.8, 128.6, 128.8, 129.0, 129.0, 129.1, 129.4, 130.4, 132.8, 138.4, 146.5, 156.7, 157.5, 158.5 ppm; MS (EI): m/z = 521; HRMS (EI): m/z calcd [M]⁺ 521.2791, found 521.2793.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-

(4-methylphenylazo)-1-phenyl-2(1H)-pyridinone (**36**, C₃₂H₃₅N₅O₂)

IR (KBr): $\bar{\nu} = 1,260$ (C–O–C), 1,650 (>C=O), 1,565 (–N=N–), 1,435 (C–N), 3,015, 2,905 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.6 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.5 (m, 8H,

vphenyl)-6-(4-ethylpiperd

Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 13.4, 14.8, 24.3, 49.2, 49.2, 49.2, 52.8, 52.8, 64.5, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.0, 124.4, 125.7, 128.7, 128.7, 129.0, 129.0, 129.1, 129.1, 129.4, 129.4, 132.8, 138.2, 146.5, 156.7, 157.5, 158.4 ppm; MS (EI): *m*/*z* = 521; HRMS (EI): *m*/*z* calcd [M]⁺ 521.2791, found 521.2790.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-(2-nitrophenylazo)-1-phenyl-2(1H)-pyridinone

$({\bf 37},\,C_{31}H_{32}N_6O_4)$

IR (KBr): $\bar{\nu} = 1,265$ (C–O–C), 1,660 (>C=O), 1,575 (–N=N–), 1,430 (C–N), 3,025, 2,905 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.5 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.2 (q, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.2, 52.8, 52.9, 64.7, 74.9, 114.4, 114.4, 120.5, 121.1, 121.4, 121.6, 124.0, 124.0, 124.4, 129.0, 129.0, 129.4, 129.4, 129.7, 132.8, 134.9, 146.5, 148.1, 156.7, 157.5, 158.4 ppm; MS (EI): m/z = 552; HRMS (EI): m/z calcd [M]⁺ 552.2485, found 552.2481.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-(3-nitrophenylazo)-1-phenyl-2(1H)-pyridinone

 $(38, C_{31}H_{32}N_6O_4)$

IR (KBr): $\bar{\nu} = 1,255$ (C–O–C), 1,650 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,025, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.6 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 5.9 (d, 1H, C₅-H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.3, 52.8, 52.8, 64.7, 74.9, 114.2, 114.4, 120.4, 121.1, 121.6, 121.6, 124.0, 124.0, 124.4, 129.0, 129.1, 129.4, 129.4, 129.6, 129.7, 132.8, 134.9, 146.5, 148.0, 156.7, 157.5, 158.3 ppm; MS (EI): m/z = 552; HRMS (EI): m/z calcd [M]⁺ 552.2485, found 552.2487.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-(4-nitrophenylazo)-1-phenyl-2(1H)-pyridinone

(4-*nitropnenylazo*)-1-*pnenyl*-2(1H)-*pyrlatione* (**39**, C₃₁H₃₂N₆O₄) IR (KBr): $\bar{\nu} = 1,255$ (C–O–C), 1,655 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,020, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3-1.4$ (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.0 (d, 1H, C₅-H), 7.0–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.2, 52.8, 52.8, 64.7, 74.9, 114.4, 114.4, 120.4, 121.1, 121.2, 121.6, 121.6, 124.0, 124.4, 129.0, 129.0, 129.4, 129.4, 129.7, 129.7, 132.8, 134.8, 146.5, 148.1, 156.7, 157.5, 158.4 ppm; MS (EI): *m/z* = 552; HRMS (EI): *m/z* calcd [M]⁺ 552.2485, found 552.2481.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-(2-methoxyphenylazo)-1-phenyl-2(1H)-pyridinone (**40**, C₃₂H₃₅N₅O₃)

IR (KBr): $\bar{\nu} = 1,250$, 1,245 (C–O–C), 1,660 (>C=O), 1,575 (–N=N–), 1,435 (C–N), 3,020, 2,915 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.5 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.6–3.5 (m, 8H, Pip–H), 3.6 (s, 3H, OCH₃), 4.2 (q, 2H, NCH₂), 6.0 (s, 1H, C₅-H), 7.0–7.8 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.3, 52.8, 52.8, 55.9, 64.7, 74.7, 99.6, 114.3, 114.4, 114.4, 120.4, 121.1, 121.6, 121.6, 124.0, 124.4, 129.0, 129.1, 129.4, 129.8, 129.9, 132.8, 146.5, 156.7, 157.5, 158.4, 159.1 ppm; MS (EI): m/z = 537; HRMS (EI): m/z calcd [M]⁺ 537.2740, found 537.2738.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-1phenyl-5-(phenylazo)-2(1H)-pyridinone (**41**, C₃₁H₃₃N₅O₂)

IR (KBr): $\bar{v} = 1,250$ (C–O–C), 1,660 (>C=O), 1,570 (–N=N–), 1,430 (C–N), 3,025, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 14.8, 49.2, 49.2, 49.3, 52.8, 52.8, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 128.7, 128.8, 128.8, 128.9, 129.0, 129.1, 129.4, 132.8, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 507; HRMS (EI): m/z calcd [M]⁺ 507.2634, found 507.2637.

5-(2-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**42**, C₃₁H₃₂ClN₅O₂)

IR (KBr): $\bar{\nu} = 1,255$ (C–O–C), 1,670 (>C=O), 1,575 (–N=N–), 1,425 (C–N), 3,020, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.9, 49.2, 49.2, 49.2, 52.8, 52.6, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.8, 134.3, 146.5, 157.1, 157.5, 160.7 ppm; MS (EI): m/z = 541 [M]⁺, 543 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 541.2245, found 541.2241.

5-(3-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-2(1H)-pyridinone (**43**, C₃₁H₃₂ClN₅O₂)

IR (KBr): $\bar{v} = 1,250$ (C–O–C), 1,660 (>C=O), 1,575 (–N=N–), 1,430 (C–N), 3,010, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.1, 49.2, 49.2, 52.8, 52.8, 64.7, 75.0, 114.4, 114.3, 118.9, 120.4, 121.6, 121.6, 124.4, 126.9, 128.9, 129.0, 129.0, 129.1, 129.4, 129.4, 130.1, 130.2, 132.8, 134.3, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 541 [M]⁺, 543 [M + 2]⁺; HRMS (EI): m/z calcd [M]⁺ 541.2245, found 541.2246.

5-(4-Chlorophenylazo)-4-(4-ethoxyphenyl)-6-(4-ethylpiperazinyl)-1-phenyl-2(1H)-pyridinone

 $(44, C_{31}H_{32}ClN_5O_2)$

IR (KBr): $\bar{v} = 1,255$ (C–O–C), 1,665 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,030, 2,905 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.2, 52.6, 52.7, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.5, 126.8, 128.9, 128.9, 129.0, 129.1, 129.4, 129.4, 130.2, 130.2, 132.7, 134.3, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z calcd [M]⁺ 541.2245, found 541.2245.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-(2-methylphenylazo)-1-phenyl-2(1H)-pyridinone (**45**, C₃₂H₃₅N₅O₂)

IR (KBr): \bar{v} = 1,240 (C−O−C), 1,640 (>C=O), 1,570 (−N=N−), 1,420 (C−N), 3,010, 2,915 (C−H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.4−1.6 (t, 3H, CH₃), 2.3 (s, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7−3.5 (m, 8H, Pip−H), 4.0−4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3−H), 7.0−7.7 (m, 13H, Ar−H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 13.4, 14.8, 15.2, 49.1, 49.2, 49.2, 52.8, 52.8, 64.7, 75.0, 114.4, 114.4, 118.9, 120.4, 121.6, 121.6, 124.4, 125.8, 128.1, 128.7, 128.7, 129.0, 129.0, 129.1, 129.4, 129.4, 132.8, 137.1, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 521; HRMS (EI): m/z calcd [M]⁺ 521.2791, found 521.2787.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-(3-methylphenylazo)-1-phenyl-2(1H)-pyridinone (46, C₃₂H₃₅N₅O₂)

IR (KBr): $\bar{\nu} = 1,240$ (C–O–C), 1,645 (>C=O), 1,575 (–N=N–), 1,425 (C–N), 3,010, 2,905 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.6 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.7 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 24.3, 49.2, 49.2, 49.3, 52.8, 52.9, 64.7, 75.0, 114.4, 114.5, 118.9, 120.4, 121.4, 121.6, 124.4, 125.8, 128.6, 128.7, 129.0, 129.0, 129.1, 129.4, 129.4, 130.4, 132.8, 138.4, 146.5, 157.1, 157.5, 160.7 ppm; MS (EI): m/z = 521; HRMS (EI): m/z calcd [M]⁺ 521.2791, found 521.2793.

 $\begin{array}{l} \label{eq:4-constraint} $$4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-(4-methylphenylazo)-1-phenyl-2(1H)-pyridinone $$$(47, C_{32}H_{35}N_5O_2)$$ \end{array}$

IR (KBr): $\bar{\nu} = 1,265$ (C–O–C), 1,650 (>C=O), 1,560 (–N=N–), 1,420 (C–N), 3,015, 2,900 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.6 (t, 3H, CH₃), 2.3 (s, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.4 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.5 (d, 1H, C3–H), 6.9–7.6 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 24.3, 49.1, 49.2, 49.2, 52.8, 52.8, 64.7, 75.0, 114.4, 114.2, 118.9, 120.4, 121.3, 121.6, 124.4, 125.7, 128.7, 128.7, 129.0, 129.0, 129.1, 129.1, 129.4, 129.4, 132.8, 138.4, 146.5, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 521; HRMS (EI): m/z calcd [M]⁺ 521.2791, found 521.2793.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-(2-nitrophenylazo)-1-phenyl-2(1H)-pyridinone (48, $C_{31}H_{32}N_6O_4$)

IR (KBr): $\bar{v} = 1,260$ (C–O–C), 1,665 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,030, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3-1.4$ (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.2, 52.8, 52.8, 64.7, 75.1, 114.4, 114.4, 118.9, 120.4, 121.1, 121.6, 121.6, 124.0, 124.4, 129.0, 129.0, 129.4, 129.4, 129.7, 129.7, 132.8, 134.9, 146.5, 148.0, 157.0, 157.5, 160.0 ppm; MS (EI): m/z = 552; HRMS (EI): m/z calcd [M]⁺ 552.2485, found 552.2481.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-(3-nitrophenylazo)-1-phenyl-2(1H)-pyridinone (49, $C_{31}H_{32}N_6O_4$)

IR (KBr): $\bar{v} = 1,250$ (C–O–C), 1,645 (>C=O), 1,575 (–N=N–), 1,420 (C–N), 3,025, 2,910 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3-1.4$ (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.2, 52.8, 52.8, 64.7, 75.1, 114.3, 114.4, 118.9, 120.4, 121.1, 121.6, 121.6, 123.4, 124.4, 129.0, 128.7, 129.4, 129.4, 129.6, 129.7, 132.6, 134.9, 146.5, 148.0, 157.0, 157.5, 160.7 ppm; MS (EI): m/z = 552; HRMS (EI): m/zcalcd [M]⁺ 552.2485, found 552.2479.

$\begin{array}{l} \label{eq:4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-} \\ (4-nitrophenylazo)-1-phenyl-2(1H)-pyridinone \\ (\textbf{50}, C_{31}H_{32}N_6O_4) \end{array}$

IR (KBr): $\bar{\nu} = 1,240$ (C–O–C), 1,650 (>C=O), 1,575 (–N=N–), 1,425 (C–N), 3,030, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3$ –1.4 (m, 6H, CH₃), 2.5 (q, 2H, NCH₂), 2.7–3.3 (m, 8H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 6.6 (d, 1H, C3–H), 7.0–7.6 (m, 14H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 13.4, 14.8, 49.2, 49.2, 49.2, 49.2, 52.8, 52.8, 64.7, 74.8, 114.4, 114.4, 118.9, 120.4, 121.1, 121.1, 121.6, 121.6, 124.4, 129.0, 129.0, 129.4, 129.4, 129.7, 129.7, 132.8, 134.8, 146.3, 148.0, 156.7, 157.5, 160.5 ppm; MS (EI): m/z = 552; HRMS (EI): m/z calcd [M]⁺ 552.2485, found 552.2483.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-5-

(2-methoxyphenylazo)-1-phenyl-2(1H)-pyridinone (**51**, C₃₂H₃₅N₅O₃)

IR (KBr): $\bar{\nu} = 1,260$ (C–O–C), 1,650 (>C=O), 1,570 (–N=N–), 1,435 (C–N), 3,010, 2,920 (C–H str) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.3-1.5$ (t, 3H, CH₃), 2.4 (s, 6H, CH₃), 2.6–3.5 (m, 8H, Pip–H), 3.6 (s, 3H, OCH₃), 4.2 (q, 2H, NCH₂), 6.6 (s, 1H, C3–H), 7.0–7.8 (m, 13H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4$, 14.8, 49.2, 49.2, 49.3, 52.6, 52.8, 55.9, 64.7, 75.5, 99.6, 114.3, 114.4, 114.4, 118.9, 120.4, 121.1, 121.6, 121.6, 124.4, 129.0, 129.1, 129.4, 129.4, 129.6, 129.8, 132.8, 146.5, 157.0, 157.5, 159.1, 160.7 ppm; MS (EI): m/z = 537; HRMS (EI): m/z calcd [M]⁺ 537.2740, found 537.27437.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-[(4-methylpiperazinyl)methyl]-1-phenyl-2(1H)-pyridinone(52, $C_{31}H_{41}N_5O_2$)

IR (KBr): $\bar{\nu} = 3,035, 2,925$ (C–H), 1,660 (>C=O), 1,245 (C–O–C), 1,430 (C = N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.3 (q, 6H, CH₃), 2.4 (s, 2H, NCH₂), 2.6 (s, 4H, CH₂), 2.7–3.4 (m, 16H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 5.9 (d, 1H, C₅-H), 6.9–7.6 (m, 9H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4, 14.8, 43.1, 49.2, 49.2, 49.3, 52.4, 52.4, 52.8, 55.3, 55.3, 57.9, 64.7, 74.9, 114.4, 114.4, 120.4, 121.6, 121.6, 124.4, 129.0, 129.0, 129.4, 129.4, 132.8, 134.8, 135.5, 156.7, 157.5, 158.3 ppm; MS (EI): <math>m/z = 515$; HRMS (EI): m/z calcd [M]⁺ 515.3260, found 515.3263.

4-(4-Ethoxyphenyl)-6-(4-ethylpiperazinyl)-3-[(4-ethylpiperazinyl)methyl]-1-phenyl-2(1H)-pyridinone (53, C₃₂H₄₃N₅O₂)

IR (KBr): $\bar{\nu} = 3,035, 2,925$ (C–H), 1,660 (>C=O), 1,245 (C–O–C), 1,430 (C=N) cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.4$ –1.5 (t, 3H, CH₃), 2.3 (q, 6H, CH₃), 2.4 (s, 4H, NCH₂), 2.5 (s, 2H, CH₂), 2.7–3.4 (m, 16H, Pip–H), 4.0–4.1 (q, 2H, OCH₂), 5.9 (d, 1H, C₅-H), 7.0–7.6 (m, 9H, Ar–H) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.4, 13.4, 14.8, 49.2, 49.2, 49.2, 49.2, 52.7, 52.7, 52.8, 52.8, 52.8, 52.8, 57.9, 64.7, 74.9, 114.4, 114.5, 120.4, 121.6, 121.7, 124.4, 129.0, 129.0, 129.4, 129.4, 132.8, 134.8, 135.3,$

156.7, 157.5, 158.3 ppm; MS (EI): m/z = 529; HRMS (EI): m/z calcd [M]⁺ 529.3417, found 529.3411.

Acknowledgments The authors are grateful to the Head of the Chemistry Department, Veer Narmad South Gujarat University, Surat, Gujarat, for providing laboratory facilities, and to the SAIF, Punjab University, Chandigarh, for NMR spectra.

References

- Dorigo P, Gaion RM, Belluco P, Fraccarollo D, Maragno I, Bobieri G, Benetollo F, Mosti L, Orsini F (1993) J Med Chem 36:2475
- 2. Farah AE, Alousi AA (1978) Life Sci 22:1139
- Alousi AA, Canter JM, Monterano MJ, Fort DJ, Ferrari RA (1983) J Cardiovasc Pharmacol 5:792
- 4. Paulvannan K, Chen T (2000) J Org Chem 65:6160
- Rodgers JD, Wang H, Patel M, Arvanitis A, Cocuzza AJ (2005) US Patent 6,969,721 B2. Bristol-Myers Squibb Pharma. Princeton
- Flynn DL, Petillo PA (2007) US Patent 7,202,257 B2. Deciphera Pharma, LLC. Lawrence
- Pemberton N (2007) Synthesis and functionalization of ring fused 2-pyridones - targeting pilli formation in *E. Coli*. Akademik avhandling. Department of Chemistry, Umea University, Sweden
- 8. Prakash HS, Senthilkumar SP (2004) Curr Org Chem 8:1521
- 9. Misic-Vukovic M, Radojkovic-Velickovic M (1998) J Serb Chem Soc 63:585
- Uscumlic G, Mijin D, Valentic N, Vajs V, Susic B (2004) Chem Phys Lett 397:148
- Forlani L, Gristoni G, Boga C, Todesco PE, Del Vechio E, Salva S, Monari M (2002) Arkivoc 11:198
- 12. Kirk-Othmer (1968) Encyclopedia of chemical technology, 2nd rev edn. Wiley Interscience Publication, Wiley
- 13. Armarego WLF (1977) In: Taylor EC, Weisberger A (eds) Stereochemistry of heterocyclic compounds. Wiley, New York
- 14. Martin WB, Martell AE (1948) J Am Chem Soc 70:1817
- 15. Patel NB, Patel AK (2004) Indian J Chem 45B:1774
- Kubo K, Murakami M, Itoh N, Arima H, Sozu I, Homma H (1979) Kokai 77, 77,066. Yamanouchi Pharmaceutical Co. Ltd., Japan
- 17. Kubo K, Murakami M, Itoh N, Arima H, Sozu I, Homma H (1979) Chem Abstr 87:201328h
- Kubo K, Murakami M, Itoh N, Arima H, Sozu I, Homma H (1979) Yakuguku Zasshi 99:558
- 19. Silverstein RM, Webster FX (1998) Spectrometric identification of organic compounds, vol 6. Wiley, New York
- Dyer JR, Cazes J, Marcel D, Khadatare AM, Jitkar SC, Malcolm R, Thomas N, Febiger L (1987) Application of absorption spectroscopy of organic compounds, vol 6. Lea & Febiger, Philadelphia
- Matoba K, Fukushima A, Arai H, Yamazaki T (1979) Chem Bull 27:242
- 22. Edward DI (1980) Antimicrobial drug action, vol 1. Macmillan Press, London and Basingstoke, p 8
- 23. Barry AL (1976) The antimicrobial susceptibility test, principle and practices. Lea & Febiger, Philadelphia